Water Quality Criteria The Spokane River water quality classifications and dissolved oxygen criteria are: | Portion Of Study Area | Classification | Classification Dissolved Oxygen Criterion | |-------------------------------|----------------|---| | Lake Spokane or Lake | Lake Class | No measurable decrease from natural conditions. | | Spokane (from Lake Spokane | | | | Dam to Nine Mile Bridge) | | 2 | | Spokane River (from Nine Mile | Class A | Dissolved oxygen shall exceed 8.0 mg/L. If "natural | | Bridge to the Idaho border) | | conditions" are less than the criteria, the natural | | | | conditions shall constitute the water quality criteria. | In addition, the Spokane River has the following specific water quality criteria (Ch. 173-201A- Special conditions: Spokane River from Lake Spokane Dam (RM 33.9) to Nine Mile Bridge (RM 58.0). (a) The average euphotic zone concentration of total phosphorus (as P) shall not exceed 25 ug/L during the period of June 1 to October 31. Figure C1. Model predicted dissolved oxygen profiles for Lake Spokane at model segments 188 for the CURRENT, NO-POINT, NO-SOURCE, PERMIT, and SOD scenarios on Julian days 181.25 (Jun 15), 258.25 (Sep 15), 273.25 (Oct 1). | TMDL Schedule w/ existing WO criteria | TMDL Approval F | Phase I - Interim Nutient Removal | Nutient Ren | noval | Phase 2 | | -Final TMDL Goal - Meet DO Criteria | - Meet D | O Criteri | a | |--|---|-----------------------------------|--|---|--|--|---|---|---|---| | | Maria
System
South | | | | | | | GIG
Duy | | ing
iol | | Point Sources | Planning for Max TP removal and reuse | | Construction | MAX TP
removal in-place | Meet natural t | Meet natural background conc or Imp Reuse - Lake Monitor - Complete UAA | or Imp Reuse | - Lake Mo | onitor - Com | plete UAA | | es que
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estable
estab
estab
estable
estable
estab
estable
estable
estab
estab
estab
estab
estab
estab
estab
est | | | | | 9(54)
(968)
2011
(276) | | | 200
100
200 | unius
184 | ne in
Lacis
Vicili
APS | | Nonpoint Sources | Tributary TMDLs completed with Imp Plan | 19.00 | Begin Implement BMPs | BMPs | Complete imp | | lement BMPs w/ monitoring and adaptive approach | ing and ad | aptive appr | oach . | | に勝りばるはは | CONTRACTOR OF STREET | の は こことの ない | S. Sign | なはない。 | | THE RESIDENCE OF THE PERSON NAMED IN | | The Personal Property lies | | というない はないことのできる | | Estimates of Ph | Estimates of Phosphorus Loading Reduction (2003 Pt Src flows) | g Reduction | (2003 Pt | Src flows) | Agrija
Agraj
Barija
Barija | Tiple is
Hry-typ
Tables | 1
5 G 2
6 2 19
11 2 18 | drive
drive | water
euse
fille i | agang
Mangle
Kang | | Estimates of Ph | osphorus Loadin | g Reduction | (2003 Pt Src flov Max TP removal Load @ 50 ug/L- all to river | Src flows) noval Load all to river | | nnin
1694)
1886 | 7 | oquee
iduite | Logical Services | P Final gos | | Estimates of Ph | osphorus Loading F Existing Avg TP load Summer 2003 #/day Flow MGD | g Reduction | (2003 Pt :
Max TP ren
@ 50 ug/L-
#/day | 103 Pt Src flows) Max TP removal Load @ 50 ug/L- all to river liday Flow MGD | | non
North
Same | 5 gist
6 gist
3 gist | Film Carico
Idente | Load at 7 | oad at TP Final goa
© 10 ugL to River
day Flow MGI | | Estimates of Ph | Existing Avg IP load Summer 2003 #/day Flow M 6.9 3.2 | g Reduction | (2003 Pt : Max TP ren @ 50 ug/L. #/day 0.4 | Src flows) hoval Load hoval Load all to river Flow MGD 3.2 | 1211
1711
1811
1811
1811
1811 | 1947 li
1934 ja
1932 ja | 6 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 | Genec
draw | Load at 8 10 u | P Final goa
gL to River
Flow MGI | | Estimates of Ph Discharger CDA Hayden Post Falls Liberty Lake | Existing Avg TP load Summer 2003 #/day Flow M 6.9 3.2 seaonal land app 4.1 2.1 9.1 0.7 | g Reduction | (2003 Pt Src fle Max TP removal Lo @ 50 ug/L- all to ri #/day Flow 0.4 3. seaonal land app 0.4 2. 0.1 0.1 | Src flows) noval Load noval Load all to river Flow MGD 3.2 and app 2.1 0.7 | | | 1 C 29 | cynics
drute
turi til | Load at 1 @ 10 u #/day 0.1 | IP Final gos
gL to River
Flow MGI
32
g P renoval | | Estimates of Ph Discharger CDA Hayden Post Falls Liberty Lake Kaiser IEP | osphorus Loading Resisting Avg TP load Summer 2003 ##day Flow Migd 6.9 3.2 seaonal land app 4.1 2.1 9.1 0.7 0.1 0.1 (Outlast 02+03 9.8 4.6" | g Reduction | (2003 Pt* Max TP ren @ 50 ug/l. #/day 0.4 Seaonal 0.4 0.1 0.1 0.1 1.1 | Src flows) noval Load noval Load all to river Flow MGD 32 and app 2.1 0.7 16* 4.8 | If effluent TP ma
effluent TP loading
as long as in-stre | P meets instreating can increating increasing c | an conc. does not increase | cynce draw | Load at 1 @ 10 u #/day 0.1 0.0 0.1 0.0 1.3 | TP Final goz
gL to River
Flow MG
TP removal
QP removal
Q.7
16.0 | | Estimates of Ph Discharger CDA Hayden Post Falls Liberty Lake Kaiser IEP Spokane City/Cnty | Sphorus Loading Existing Avg TP load Summer 2003 #/day Flow M 6.9 3.2 seagnal land app 4.1 9.1 0.7 0.1 0.0 (Outfall 9.8 4.8* 151.0 36.5 | g Reduction | (2003 Pt*) Max TP ren @ 50 ug/l- #/day 0.4 5.0000101 0.4 0.1 3.2 1.1 14.5 | Src flows) noval Load all to river Flow MGD 3.2 and app 2.1 0.7 16* 4.8 38.5 | If efficient 7 efficient TP locals long as in | If effluent TP meets instream target conc ffluent TP loading can increase with effluent fit as long as in-stream conc. does not increase | m target conc.
se with effluent
ces not increas | cynce
draw | Load at 1 @ 10 w #day 0.1 0.0 1.3 0.2 | TP Final goz
gL to River
Flow MGI
3.2
QP remova
2.1
0.7
16.0 | | Estimates of Ph Discharger CDA Hayden Post Falls Liberty Lake Kaiser EP Spokane City/Cnty Spokane CSO&Storm | OSPhorus Loadin Existing Avg TP load Summer 2003 #iday Flow! 6.9 33 seaonal land app 4.1 2.3 9.1 0.1 (Outland 9.8 4.8 151.0 36 | g Reduction | (2003 Pt*) Max IP ren @ 50 ug/l. #/day 0.4 5eaonal 0.1 0.1 0.1 14.5 CSO elim & S. | Src flows) noval Load all to river Flow MGD 3.2 and app 2.1 0.7 16* 4.8 38.5 | If efficient? efficient TP log as long as it | P meets instread ding can incread conc. of | m target conc.
se with effluent
oes not increas | cance
dana
tari til | | TP Final goz
gL to River
Flow Miga
3.2
gP remova
2.1
0.7
16.0
4.8
36.5 | | Estimates of Ph Discharger CDA Hayden Post Falls Liberty Lake Kaiser IEP Spokane City/Cnty Spokane CSO&Storm Tot. PS Load*** | OSPhorus Loadin Existing Avg TP load Summer 2003 #/day Flow I 6.9 3.3 seaconal land app 4.1 0.3 9.1 0.1 (Outla 9.8 4.8 151.0 36 14.2 36 | g Reduction | (2003 Pt Src flow: Max TP removal Load @ 50 ug/L- all to river #iday Flow MGD 0.4 3.2 seaonal land app 0.4 2.1 0.1 0.1 0.1 0.2 16* 1.1 4.8 14.5 36.5 CSO elim & SW mgmt plans | Src flows) noval Load all to river Flow MGD 3.2 and app 2.1 0.7 16* 4.8 36.5 | if effluent?
effluent TP lo
as long as i | P meets instreading can increa | m larget conc.
se with effluent
ces not increas | cynce draw | Load at 1 @ 10 u #/day 0.1 0.1 0.1 0.0 1.3 0.2 2.9 2.9 Reduce / E | P Final goad Lto River Flow MGI 3.2 3.2 3.7 9.7 16.0 7.16.0 4.8 36.5 conc-based iii m CSO & S | | Estimates of Ph Discharger CDA Hayden Post Falls Liberty Lake Kaiser IEP Spokane City/Cnty Spokane CSO&Storm Tot. PS Load*** Tributary Load (Natural+NPS) | Sphorus Loading Existing Avg TP load Summer 2003 #iday Flow MG 6.9 3.2 seaonal land app 2.1 9.1 0.7 0.1 0.7 0.1 0.7 151.0 36.5 14.2 150.8 150.8 YR 2001 | g Reduction | (2003 Pt*) Max TP ren @ 50 ug/L- #/day 0.4 0.4 0.1 3.2 1.1 14.5 CSO elim & S) 150.8 | Src flows) novai Load all to river Flow MGD 3.2 and app 2.1 0.7 16° 4.8 38.5 V mgmt plans | If effluent TP ma
effluent TP loading
as long as in-stre | | ets instream target conc can increase with effluent flow am conc. does not increase b loads needed to meet TMDL | Sologia de la composición del composición de la | | Load at TP Final goal @ 10 ugL to River #iday Flow MGD 0.1 3.2 arry spring P removai? 0.1 2.1 0.0 16.0 2.2 4.8 2.9 36.5 aduce / Ellim CSO & SV 4.6 conc-based lim | "with estimated Pattenuation Point Source compliance schedule implemented via common Administrative Order then rolled into all individual permits within 2 years Figure 10. Summary - Spokane R. Proposed TMDL and Phosphorus Loading Reduction Strategy (9-20-04) ipokane Natural round TP Load Jmi + LSR) 287.5 594.3 225.3 98.9 67 79.7 Figure 9. Estimate of 2003 effective summer (June – October) phosphorus loading to Lk Spokane using natural condition estimates from CE-Qual-W2 and attenuated point source loadings estimated from the P- attenuation model for a 1-in-10 low flow year. ## Lake Spokane Phosphorous Loads with Current WWTP Flows ## Lake Spokane Phosphorous Loads Plus 50 Microgram Phosphorous at Current WWTP Flows ## Lake Spokane Phosphorous Loads Plus 10 Microgram Phosphorous @ Current WWTP Flow 00 J-U-B ENGINEERS, Inc. ENGINEERS - SURVEYORS - PLANNERS